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“The penguin 
is shuffling, 
taking cautious 
steps.”

“The jazz 
saxophonist 
performs on 
stage."

+

+

“The gazelle 
galloping and 
jumping.”

+

Figure 1. Given a still sketch in vector format and a text prompt describing a desired action, our method automatically animates the drawing
with respect to the prompt. Please see the full animations in our project page: https://livesketch.github.io/

Abstract
A sketch is one of the most intuitive and versatile tools

humans use to convey their ideas visually. An animated
sketch opens another dimension to the expression of ideas
and is widely used by designers for a variety of purposes.
Animating sketches is a laborious process, requiring ex-
tensive experience and professional design skills. In this
work, we present a method that automatically adds motion
to a single-subject sketch (hence, “breathing life into it”),
merely by providing a text prompt indicating the desired
motion. The output is a short animation provided in vec-
tor representation, which can be easily edited. Our method
does not require extensive training, but instead leverages
the motion prior of a large pretrained text-to-video diffu-
sion model using a score-distillation loss to guide the place-
ment of strokes. To promote natural and smooth motion and
to better preserve the sketch’s appearance, we model the
learned motion through two components. The first governs
small local deformations and the second controls global
affine transformations. Surprisingly, we find that even mod-
els that struggle to generate sketch videos on their own can
still serve as a useful backbone for animating abstract rep-
resentations.

*Indicates Equal Contribution. Order determined by coin flip.

1. Introduction
Sketches serve as a fundamental and intuitive tool for visual
expression and communication [3, 20, 26]. Sketches cap-
ture the essence of visual entities with a few strokes, allow-
ing humans to communicate abstract visual ideas. In this
paper, we propose a method to “breathe life” into a static
sketch by generating semantically meaningful short videos
from it. Such animations can be useful for storytelling, il-
lustrations, websites, presentations, and just for fun.

Animating sketches using conventional tools (such as
Adobe Animate and Toon Boom) is challenging even for
experienced designers [76], requiring specific artistic ex-
pertise. Hence, long-standing research efforts in computer
graphics sought to develop automatic tools to simplify this
process. However, these tools face multiple hurdles, such
as a need to identify the semantic component of the sketch,
or learning to create motion that appears natural. As such,
existing methods commonly rely on user-annotated skeletal
key points [17, 74] or user-provided reference motions that
align with the sketch semantics [9, 76, 88].

In this work, we propose to bring a given static sketch to
life, based on a textual prompt, without the need for any hu-
man annotations or explicit reference motions. We do so by
leveraging a pretrained text-to-video diffusion model [43].
Several recent works propose using the prior of such mod-
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els to bring life to a static image [63, 84, 94]. However,
sketches pose distinct challenges, which existing methods
fail to tackle as they are not designed with this domain in
mind. Our method takes the recent advancement in text-to-
video models into this new realm, aiming to tackle the chal-
lenging task of sketch animation. For this purpose, we pro-
pose specific design choices considering the delicate char-
acteristics of this abstract domain.

In line with prior sketch generation approaches [80, 81],
we use a vector representation of sketches, defining a sketch
as a set of strokes (cubic Bézier curves) parameterized by
their control points. Vector representations are popular
among designers as they offer several advantages compared
to pixel-based images. They are resolution-independent, i.e.
can be scaled without losing quality. Moreover, they are
easily editable: one can modify the sketch’s appearance by
choosing different stroke styles or change its shape by drag-
ging control points. Additionally, their sparsity promotes
smooth motion while preventing pixelization and blurring.

To bring a static sketch to life, we train a network to mod-
ify the stroke parameters for each video frame with respect
to a given text prompt. Our method is optimization-based
and requires no data or fine-tuning of large models. In addi-
tion, our method is general and can easily adapt to different
text-to-video models, facilitating the use of future advance-
ments in this field.

We train the network using a score-distillation sampling
(SDS) loss [67]. This loss was designed to leverage pre-
trained text-to-image diffusion models for the optimiza-
tion of non-pixel representations (e.g., NeRFs [55, 58] or
SVGs [38, 39]) to meet given text-based constraints. We
use this loss to extract motion priors from pretrained text-
to-video diffusion models [32, 73, 84]. Importantly, this
allows us to inherit the internet-scale knowledge embedded
in such models, enabling animation for a wide range of sub-
jects across multiple categories.

We seperate the object movement into two components:
local motion and global motion. Local motion aims to cap-
ture isolated, local effects (a saxophone player bending their
knee). Conversely, global motion affects the object shape as
a whole and is modeled through a per-frame transformation
matrix. It can thus capture rigid motion (a penguin hob-
bling across the frame), or coordinate effects (the same pen-
guin growing in size as it approaches the camera). We find
that this separation is crucial in generating motion that is
both locally smooth and globally significant while remain-
ing faithful to the original characteristics of the subject.

We animate sketches from various domains and demon-
strate the effectiveness of our approach in producing smooth
and natural motion that conveys the intention of the control
text while better preserving the shape and appearance of the
input sketch.

We compare our results with recent pixel-based ap-

proaches highlighting the advantage of vector-based anima-
tion in the sketch domain. Our work allows anyone to breath
life into their sketch in a simple and intuitive manner.

2. Previous Work
Sketches Free-hand sketching is a valuable tool for ex-
pressing ideas, concepts, and actions [20, 21, 30]. Exten-
sive research has been conducted on the automatic gener-
ation of sketches [95]. Some works utilize pixel represen-
tation [40, 47, 75, 91], while others employ vector repre-
sentation [6, 7, 13, 28, 50, 52, 56, 60, 70]. Several works
propose a unified algorithm to produce sketches with a va-
riety of styles [11, 53, 97] or at varying levels of abstraction
[5, 61, 80, 81]. Traditional methods for sketch generation
commonly rely on human-drawn sketch datasets. More re-
cently, some works [22, 80, 81] incorporated the prior of
large pretrained language-vision models to eliminate the de-
pendency on such datasets. We also rely on such priors,
and use a vector-based approach to depict our sketches, as
it is a more natural representation for sketches and finds
widespread use in character animation.

Sketch-based animation A long-standing area of inter-
est in computer graphics aims to develop intuitive tools for
creating life-like animations from still inputs. In charac-
ter animation, motion is often represented as a temporal se-
quence of poses. These poses are commonly represented
via user provided annotations, such as stick figures [14],
skeletons [46, 65], or partial bone lines [64]. An alternative
line of work represents motion through user provided 2D
paths [15, 25, 36, 78], or through space-time curves [27].
However, these approaches still require some expertise and
manual work to adjust different keyframes. Some methods
assist animation by interactively predicting what users will
draw next [1, 82, 92]. However, they still require manual
sketching operations for each keyframe.

Rather than relying on user-created motion, some works
propose to extract motion from real videos by statistical
analysis of datasets [59], or by applying dynamic deforma-
tions extracted from a driving video [76]. Others turn to
physically-based motion effects [41, 93], or learn to synthe-
size animations of hand-drawn 2D characters using a set of
images depicting the character in various poses [17, 31, 68].
Zhang et al. [99] presented a method for transferring motion
between vector-graphics videos using a “motion vectoriza-
tion” pipeline.

Drawing on 3D literature, some works aim to ”wake up”
a photo or a painting, extracting a textured human mesh
from the image and moving it using pre-defined anima-
tions [33, 42, 87]. More recently, given a hand-drawn sketch
of a human figure, Smith et al. [74] construct a character
rig onto which they re-target motion capture data. Their
approach is similarly limited to human figures and a prede-
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fined set of movements. Moreover, it commonly requires
direct human intervention to fix skeleton joint estimations.

In contrast to these methods, our method requires only
a single sketch and no skeletons or explicit references. In-
stead, it leverages the strong prior of text-to-video genera-
tive models and generalizes across a wide range of anima-
tions described by free-form prompts.

Text-to-video generation Early works explored expand-
ing the capabilities of recurrent neural networks [4, 10, 16],
GANs [44, 51, 66, 79, 101], and auto-regressive transform-
ers [86, 89, 90, 96] from image generation to video genera-
tion. However, these works primarily focused on generating
videos within limited domains.

More recent research extends the capabilities of power-
ful text-to-image diffusion models to video generation by
incorporating additional temporal attention modules into
existing models or by temporally aligning an image de-
coder [8, 54, 72, 85]. Commonly, such alignment is per-
formed in a latent space [2, 19, 49, 54, 83, 100]. Others train
cascaded diffusion models [32], or learn to directly generate
videos within a lower-dimensional 3D latent space [29].

We propose to extract the motion prior from such mod-
els [73] and apply it to a vector sketch representation.

Image-to-video generation A closely related research
area is image-to-video generation, where the goal is to ani-
mate an input image. Make-It-Move [34] train an encoder-
decoder architecture to generate video sequences condi-
tioned on an input image and a driving text prompt. La-
tent Motion Diffusion [35] learn the optical flow between
pairs of video frames and use a 3D-UNet-based diffusion
model to generate the resulting video sequence. CoDi [77]
align multiple modalities (text, image, audio, and video)
to a shared conditioning space and output space. Mod-
elScope [83] train a latent video diffusion model, condi-
tioned on an image input. Others first caption an image,
then use the caption to condition a text-to-video model [54].
VideoCrafter [12] train a model conditioned on both text
and image, with a special focus preserving the content,
structure, and style of this image. Gen-2 [71] also operate
in this domain, though their model’s details are not public.

While showing impressive results in the pixel domain,
these methods struggle to generalize to sketches. Our
method is designed for sketches, constraining the outputs to
vector representations that better preserve both the domain,
and the characteristics of the input sketch.

3. Preliminaries
Vector representation Vector graphics allow us to cre-
ate visual images directly from geometric shapes such as
points, lines, curves, and polygons. Unlike raster im-
ages (represented with pixels), vector representation is

resolution-free, more compact, and easier to modify. This
quality makes vector images the preferred choice for var-
ious design applications, such as logo design, prints, ani-
mation, CAD, typography, web design, infographics, and
illustrations. Scalable Vector Graphics (SVG) stands out as
a popular vector image format due to its excellent support
for interactivity and animation. We employ a differentiable
rasterizer [48] to convert a vector image into its pixel-based
image. This lets us manipulate the vector content using
raster-based loss functions, as described below.

Score-Distillation Sampling The score-distillation sam-
pling (SDS) loss, first proposed in Poole et al. [67], serves
as a means for extracting a signal from a pretrained text-to-
image diffusion model.

In their seminal work, Poole et al. propose to first use
a parametric image synthesis model (e.g., a NeRF [57]) to
generate an image x. This image is then noised to some
intermediate diffusion time step t:

xt = αtx+ σtϵ, (1)

where αt, σt are parameters dependant on the noising
schedule of the pretrained diffusion model, and ϵ ∈ N (0, 1)
is a noise sample.

The noised image is then passed through the diffusion
model, conditioned on a text-prompt c describing some de-
sired scene. The diffusion model’s output, ϵθ(xt, t, c), is a
prediction of the noise added to the image. The deviation
of this prediction from the true noise, ϵ, can serve as a mea-
sure of the difference between the input image and one that
better matches the prompt. This measure can then be used
to approximate the gradients to the initial image synthesis
model’s parameters, ϕ, that would better align its outputs
with the prompt. Specifically,

∇ϕLSDS =

[
w(t)(ϵθ(xt, t, y)− ϵ)

∂x

∂ϕ

]
, (2)

where w(t) is a constant that depends on αt. This optimiza-
tion process is repeated, with the parametric model converg-
ing toward outputs that match the conditioning prompt.

In our work, we use this approach to extract the motion
prior learned by a text-to-video diffusion model.

4. Method
Our method begins with two inputs: a user-provided static
sketch in vector format, and a text prompt describing the
desired motion. Our goal is to generate a short video, in
the same vector format, which depicts the sketched subject
acting in a manner consistent with the prompt. We there-
fore define three objectives that our approach should strive
to meet: (1) the output video should match the text prompt,
(2) the characteristics of the original sketch should be pre-
served, and (3) the generated motion should appear natural
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Figure 2. Data representation. Each curve (black or blue) is a
cubic Bézier curve with 4 control points (red, shown for the blue
curves). The total number of control points in the given sketch is
denoted by N . For each frame and control point pi, we learn a
displacement ∆pi (green).

and smooth. Below, we outline the design choices we use
to meet each of these objectives.

4.1. Representation

The input vector image is represented as a set of strokes
placed over a white background, where each stroke is a two-
dimensional Bézier curve with four control points. Each
control point is represented by its coordinates: p = (x, y) ∈
R2. We denote the set of control points in a single frame
with P = {p1, ..pN} ∈ RN×2, where N denotes the total
number of points in the input sketch (see Figure 2). This
number will remain fixed across all generated frames. We
define a video with k frames as a sequence of k such sets of
control points, and denote it by Z = {P j}kj=1 ∈ RN ·k×2.

Let P init denote the set of points in the initial sketch.
We duplicate P init k times to create the initial set of frames
Zinit. Our goal is to convert such a static sequence of
frames into a sequence of frames animating the subject ac-
cording to the motion described in the text prompt. We
formulate this task as learning a set of 2D displacements
∆Z = {∆pji}

j∈k
i∈N , indicating the displacement of each

point pji , for each frame j (Fig. 2, in green).

4.2. Text-Driven Optimization

We begin by addressing our first objective: creating an out-
put animation that aligns with the text prompt. We model
the animation using a “neural displacement field” (Sec. 4.3),
a small network M that receives as input the initial point set
Zinit and predicts their displacements M(Zinit) = ∆Z.
To train this network, we distill the motion prior encapsu-
lated in a pretrained text-to-video diffusion model [84], us-
ing the SDS loss of Eq. (2).

At each training iteration (illustrated in Fig. 3), we add
the predicted displacement vector ∆Z (marked in purple)
to the initial set of points Zinit to form the sequence Z.
We then use a differentiable rasterizer R [48], to transfer
each set of per-frame points P j to its corresponding frame
in pixel space, denoted as F j = R(P j). The animated
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Figure 3. Text-driven optimization. At each training iteration: (1)
We duplicate the initial control points across k frames and sum
them with their predicted offsets. We render each frame and con-
catenate them to create the output video. (2) We use the SDS loss
to extract a signal from a pretrained text-to-video model, which is
used to update M, the model that predicts the offsets.

sketch is then defined by the concatenation of the rasterized
frames, F = {F 1, ..F k} ∈ Rh×w×k.

Next, we sample a diffusion timestep t and noise ϵ ∼
N (0, 1). We use these to add noise to the rasterized video
according to the diffusion schedule, creating Ft. This noisy
video is then denoised using the pretrained text-to-video
diffusion model ϵθ, where the diffusion model is condi-
tioned on a prompt describing an animated scene (e.g., “a
galloping horse”). Finally, we use Eq. (2) to update the pa-
rameters of M and repeat the process iteratively.

The SDS loss thus guides M to learn displacements
whose corresponding rasterized animation aligns with the
desired text prompt. The extent of this alignment, and hence
the intensity of the motion, is determined by optimization
hyperparameters such as the diffusion guidance scale and
learning rates. However, we find that increasing these pa-
rameters typically leads to artifacts such as jitter and shape-
deformations, compromising both the fidelity of the original
sketch and the fluidity of natural motion (see Sec. 5.2). As
such, SDS alone fails to address our additional goals: (2)
preserving the input sketch characteristics, and (3) creating
natural motion. Instead, we tackle these goals through the
design of our displacement field, M.

4.3. Neural Displacement Field

We approach the network design with the intent of pro-
ducing smoother motion with reduced shape deformations.
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Figure 4. Network architecture. The input to the network is the initial set of control points Zinit (left, gray), and the output is the set of
displacements ∆Z. The network consists of three parts. First, each control point pji is projected with Mshared into a latent representation
and summed with a positional encoding. These point features are passed to two different branches to predict global and local motion. The
local motion predictor Ml (green) is a simple MLP that predicts an offset for each point (∆Zl), representing unconstrained local motion.
The global motion predictor Mg predicts a per-frame transformation matrix T j which applies scaling, shear, rotation, and translation. T j

is then applied to the points Pj in the corresponding frame to produce ∆Zg . ∆Z is given by the sum: ∆Z = ∆Zg +∆Zl.

We hypothesize that the artifacts observed with the uncon-
strained SDS optimization approach can be attributed in
part to two mechanisms: (1) The SDS loss can be min-
imized by deforming the generated shape into one that
better aligns with the text-to-video model’s semantic prior
(e.g., prompting for a scuttling crab may lead to undesired
changes in the shape of the crab itself). (2) Smooth mo-
tion requires small displacements at the local scale, and the
network struggles to reconcile these with the large changes
required for global translations. We propose to tackle both
of these challenges by modeling our motion through two
components: An unconstrained local-motion path, which
models small deformations, and a global path which models
affine transformations applied uniformly to an entire frame.
This split will allow the network to separately model mo-
tion along both scales while restricting semantic changes in
the path that controls greater scale movement. Below we
outline the specific network design choices, as well as the
parametrization that allows us to achieve this split.

Shared backbone Recall that our network, illustrated in
Fig. 4, aims to map the initial control point set Zinit to their
per-frame displacements M(Zinit) = ∆Z. Our first step is
to create a shared feature backbone which will feed the sep-
arate motion paths. This component is built of an embed-
ding step, where the coordinates of each control point are
projected using a shared matrix Mshared, and then summed
with a positional encoding that depends on the frame index,
and on the order of the point in the sketch. These point fea-
tures are then fed into two parallel prediction paths: local,
and global (Fig. 4, green and blue paths, respectively).

Local path The local path is parameterized by Ml, a
small MLP that takes the shared features and maps them
to an offset ∆Zl for every control point in Zinit. Here,

the goal is to allow the network to learn unconstrained mo-
tion on its own to best match the given prompt. Indeed, in
Sec. 5 we show that an unconstrained branch is crucial for
the model to create meaningful motion. On the other hand,
using this path to create displacements on the scale needed
for global changes requires stronger SDS guidance or larger
learning rates, leading to jitter and unwanted deformations
at the local level. Hence, we delegate these changes to the
global motion path. We note that similar behavior can be
observed when directly optimizing the control points (i.e.
without a network, following [38, 39], see Sec. 5.2).

Global path The goal of the global displacement predic-
tion branch is to allow the model to capture meaningful
global movements such as center-of-mass translation, ro-
tation, or scaling, while maintaining the object’s original
shape. This path consists of a neural network, Mg , that pre-
dicts a single global transformation matrix for each frame
P j . The matrix is then used to transform all control points
of that frame, ensuring that the shape remains coherent.
Specifically, we model the global motion as the sequen-
tial application of scaling, shear, rotation, and translation.
These are parameterized using their standard affine matrix
form (Fig. 4), which contains two parameters each for scale,
shear, and translation, and one for rotation. Denoting the
successive application of these transforms for frame j by
T j , the global branch displacement for each point in this
frame is then given by: ∆pji,global = T j ⊙ piniti − piniti .

We further extend the user’s control over the individual
components of the generated motion by adding a scaling
parameter for each type of transformation: λt, λr, λs and
λsh for translation, rotation, scale, and shear, respectively.
For example, let (djx, d

j
y) denote the network’s predicted

translation parameters. We re-scale them as: (djx, d
j
y) →

(λtd
j
x, λtd

j
y). This allows us to attenuate specific aspects
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“A waving flag 
fluttering and 
rippling in the 
wind.”

+

+

+

“A dolphin 
swimming and 
leaping out of  
the water.”

“The wine in the 
wine glass sways 
from side to side.”

Figure 5. Qualitative results. Our model converts an initial sketch and a driving prompt describing some desired motion into a short video
depicting the sketch moving according to the prompt. See the supplementary for the full videos and additional results.

of motion that are undesired. For example, we can keep
a subject roughly stationary by setting λt = 0. By mod-
eling global changes through constrained transformations,
applied uniformly to the entire frame, we limit the model’s
ability to create arbitrary deformations while preserving its
ability to create large translations or coordinated effects.

Our final predicted displacements ∆Z are simply the sum of
the two branches: ∆Zl + ∆Zg . The strength of these two
terms (governed by the learning rates and guidance scales
used to optimize each branch) will affect a tradeoff between
our first goal (text-to-video alignment), and the other two
goals (preserving the shape of the original sketch and cre-
ating smooth and natural motion). As such, a user can use
this tradeoff to gain additional control over the generated
video. For instance, prioritizing the preservation of sketch
appearance by using a low learning rate for the local path,
while affording greater freedom to global motion. We fur-
ther demonstrate this tradeoff in the supplementary.

4.4. Training Details

We alternate between optimizing the local path and opti-
mizing the global path. The shared backbone is optimized
in both cases. Unless otherwise noted, we set the SDS guid-
ance scale to 30 for the local path and 40 for the global
path. We use Adam [45] with a learning rate of 1e−4 for the
global path and a learning rate of 5e−3 for the local path.
We find it useful to apply augmentations (random crops and
perspective transformations) to the rendered videos during
training. We further set λt = 1.0, λr = 1e−2, λs =
5e−2, λsh = 1e−1. For our diffusion backbone, we use
ModelScope text-to-video [83], but observe similar results
with other backbones (see the supplementary file).

We optimize the networks for 1, 000 steps, taking

roughly 30 minutes per video on a single A100 GPU. In
practice, the model often converges after 500 steps (15 min-
utes). For additional training details, see the supplementary.

5. Results

We begin by showcasing our method’s ability to animate a
diverse set of sketches, following an array of text prompts
(see Fig. 5 and supplementary videos). Our method can cap-
ture the delicate swaying of a dolphin in the water, follow
a ballerina’s dance routine, or mimic the gentle motion of
wine swirling in a glass. Notably, it can apply these motions
to sketches without any common skeleton or an explicit no-
tation of parts. Moreover, our approach can animate the
same sketch using different prompts (see Fig. 6), extend-
ing the freedom and diversity of text-to-video models to the
more abstract sketch domain. Additional examples and full
videos can be found in the supplementary materials.

5.1. Comparisons

As no prior art directly tackles the reference-free sketch
animation task, we explore two alternative approaches:
pixel-based image-to-video approaches, and skeleton-based
methods that build on pre-defined motions.

In the pixel-based scenario, we compare our method with
four models: (1) ZeroScope image-to-video [54] which au-
tomatically captions the image [98] and uses the caption to
prompt a text-to-video model. (2) ModelScope [83] image-
to-video, which is directly conditioned on the image. (3)
VideoCrafter [12] which is conditioned on both the image
and the given text prompt, and (4) Gen-2 [71], a commercial
web-based tool, conditioned on both image and text.

The results are shown in Fig. 7. We select representative
frames from the output videos. The full videos are available
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Figure 6. Our method can be used to animate the same sketch
according to different prompts. These are typically restricted to
actions that the portrayed subject would naturally perform. See
the supplementary videos for more examples.

(4) Gen2

(3)VideoCrafter

Ours

(1) ZeroScope (2) ModelScope

(5) Animated drawings

Input

“The 
ballerina is 
dancing.”

Figure 7. Qualitative comparisons. Image-to-video models suffer
from artifacts and struggle to preserve the sketch shape (or even re-
main in a sketch domain). Animated drawings relies on skeletons
and pre-captured reference motions. Hence, it cannot generalize to
new domains. See the supplementary videos for more examples.

in the supplementary material.
The results of ZeroScope and VideoCrafter show signif-

icant artifacts, and commonly fail to even produce a sketch.
ModelScope fare batter, but struggle to preserve the shape
of the sketch. Gen-2 either struggle to animate the sketch,
or transforms it into a real image, depending on the input
parameters (see the supplementary videos).

We further compare our approach with a skeleton and
reference-based method [74] (Fig. 7, Animated Drawings).
This method accounts for the sketch-based nature of our
data and can better preserve its shape. However, it requires
per-sketch manual annotations and is restricted to a pre-
determined set of human motions. Hence, it struggles to an-
imate subjects which cannot be matched to a human skele-
ton, or whose motion does not align with the presets (see
supplementary). In contrast, our method inherits the diver-
sity of the text-to-video model and generalizes to multiple
target classes without annotations or explicit references.

We additionally evaluate our method quantitatively. We
compare with open methods that require no human inter-
vention and can be evaluated at scale (ZeroScope [54],

Ours w/o network w/o global w/o localInput

Figure 8. Qualitative ablation. Removing the neural network or the
global path leads to shape deviations or jittery motion due to the
need for higher learning rates (see supplementary videos). Mod-
eling only global movement improves shape consistency, but fails
to create realistic motion.

ModelScope [83], and Videocrafter [12]). We follow [80]
and collect sketches spanning three categories: humans, an-
imals, and objects. We asked ChatGPT to randomly select
ten instances per category and suggest prompts describing
their typical motion. We used CLIPasso [81] to generate a
sketch for each subject. We applied our method and the al-
ternative methods to these sketches and prompts, resulting
in 30 animations per method (videos in the supplementary).

Following pixel-based methods [12, 19], we use
CLIP [69] to measure the “sketch-to-video” consistency,
defined as the average cosine similarity between the video’s
frames and the input sketch used to produce it.

We further evaluate the alignment between the gener-
ated videos and their corresponding prompts (“text-to-video
alignment”). We use X-CLIP [62], a model that extends
CLIP to video recognition. Here, we compare to the only
baseline which is jointly guided by both image and text [12].

All results are provided in Tab. 1a. Our method outper-
forms the baselines on sketch-to-video consistency. In par-
ticular, it achieves significant gains over ModelScope whose
text-to-video model serves as our prior. Moreover, our ap-
proach better aligns with the prompted motion, despite the
use of a weaker text-to-video model as a backbone. These
results, and in particular the ModelScope scores, demon-
strate the importance of the vector representation which as-
sists us in successfully extracting a motion prior without the
low quality and artifacts introduced when trying to create
sketches in the pixel domain.

5.2. Ablation Study

We further validate our suggested components through an
ablation study. In particular, we evaluate the effect of using
the neural prior in place of direct coordinate optimization
and the effect of the global-local separation.

Qualitative results are shown in Fig. 8 (the corresponding
videos are provided in the supplementary materials). As
can be observed, removing the neural network can lead to
increased jitter and harms shape preservation. Removing
the global path leads to diminished movement across the
frame and less coherent shape transformations. In contrast,
removing the local path leads to unrealistic wobbling while
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Method Sketch-to-video Text-to-Video
consistency (↑) alignment(↑)

ZeroScope 0.754± 0.009 -
ModelScope 0.779± 0.009 -
VideoCrafter 0.876± 0.007 0.124± 0.005
Ours 0.965± 0.003 0.142± 0.005

(a) Comparisons to pixel-based approaches

Setup Sketch-to-video Text-to-Video
consistency (↑) alignment(↑)

Full 0.965± 0.003 0.142± 0.005
No Net 0.926± 0.007 0.142± 0.005
No Glob. 0.936± 0.006 0.140± 0.005
No Local 0.970± 0.002 0.140± 0.004

(b) Ablation results
(c) User study

Table 1. Quantitative metrics. (a) CLIP-based consistency and text-video alignment comparisons to open-source image-to-video baselines.
(b) The same CLIP-metrics used for an ablation study. (c) User study results. We pit our full model against each ablation setup. The blue
bar indicates the percent of responders that preferred our full model over each baseline. Dashed area is one standard error.

keeping the original sketch almost unchanged.
In Tab. 1b, we show quantitative results, following the

same protocol as in Sec. 5.1. The sketch-to-video consis-
tency results align with the qualitative observations. How-
ever, we observe that the metric for text-to-video alignment
[62] is not sensitive enough to gauge the difference between
our ablation setups (standard errors are larger than the gaps).

We additionally conduct a user study, based on a two-
alternative forced-choice setup. Each user is shown two
videos (one output from the full method, and one from a
random ablation setup) and asked to select: (1) the video
that better preserves the appearance of the initial sketch, and
(2) the video that better matches the motion outlined in the
prompt. We collected responses from 31 participants over
30 pairs. The results are provided in Tab. 1c.

Users considered the full method’s text-to-video align-
ment to be on-par or better than all ablation setups. When
considering sketch-to-video consistency, our method is pre-
ferred over both setups that create reasonable motion (no
network and no global). Removing the local path leads
to higher consistency with respect to the original frame,
largely because the sketch remains almost unchanged. Our
full method allows for more expressive motion, while still
showing remarkable preservation of the input sketch.

In the supplementary materials, we provide further anal-
ysis on the effects of our hyperparameter choices, and high-
light an emergent trade-off between shape preservation and
the quality of generated motion.

6. Limitations
While our work enables sketch-animation across various
classes and prompts, it comes with limitations. First, we
build upon the sketch representation from [81]. However,
sketches can be represented in many forms with different
types of curves and primitive shapes. Using our method
with other sketch representations could result in perfor-
mance degradation. For instance, in Fig. 9(1) the surfer’s
scale has significantly changed. Addressing the diversity of
vector sketches requires further development. Second, our
method assumes a single-subject input sketch (a common
scenario in character animation techniques). When applied

(1) Sketch 
representation

(2) Multiple 
objects

(3) Shape 
preservation

(4) Text-to-
video prior

In
pu

t
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Figure 9. Method limitations. The method may struggle with cer-
tain sketch representations, fail to tackle multiple objects or com-
plex scenes, or create undesired shape changes. Moreover, it is
restricted to motions which the text-to-video prior can create.

to scene sketches or sketches with multiple objects, we ob-
serve reduced result quality due to the design constraints.
For example in Fig. 9(2), the basketball cannot be separated
from the player, contrary to the natural motion of dribbling.

Third, our method faces a trade-off between motion
quality and sketch fidelity, and a diligent balance should be
achieved between the two. In Fig. 9(3), the animated squir-
rel’s appearance differs from the input sketch. This trade-off
is further discussed in the supplementary material. Potential
improvement lies in adopting a mesh-based representation
with an approximate rigidity loss [37], or by trying to en-
force consistency in the diffusion feature space [24] .

Finally, our approach inherits the limitations of text-to-
video priors. Such models are trained on large-scale data,
but may be unaware of specific motions, or portray strong
biases. For example, as demonstrated in Fig. 9, the model
we utilize tend to produce significant artefacts when used
for text-to-video generation. However, our method is ag-
nostic to the backbone model and hence could likely by
used with newer, improved models as they become avail-
able, or with personalized models [23] that were augmented
with new, unobserved motions.

7. Conclusions
We presented a technique to breath life into a given static
sketch, following a text prompt. Our method builds on
the motion prior captured by powerful text-to-video mod-
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els. We show that even though these models struggle with
generating sketches directly, they can still comprehend such
abstract representations in a semantically meaningful way,
creating smooth and appealing motions. We hope that our
work will facilitate further research to provide intuitive and
practical tools for sketch animation that incorporate recent
advances in text-based video generation.
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A. Additional results and videos
All videos and a large number of additional results are avail-
able in our supplementary website. These include an ar-
ray of subjects animated with our method, along with addi-
tional comparisons, ablation experiments and visualizations
of limitations. Please note that all comparisons and ablation
baseline results use our default parameters, while the large
video gallery includes results with different parameter set-
tings, chosen according to our aesthetic preferences.

B. Analysis and ablation
In this section we present an array of experiments that ex-
plore the sensitivity of our method to different hyperpa-
rameters of the approach. These include technical changes
(such as learning rate adjustments), but also conceptual ex-
plorations such as the effect of sketch abstraction on the
generated videos.

B.1. Text prompt effect

Our animation process is guided by a user-provided text,
based on the prior of a pretrained text-to-video model. This
section further examines how the specified prompt affects
the animation. We first verify that the text itself influences
the results in a meaningful way. To do so, we apply our
method to several example sketches, using two alternatives:
A “generic” prompt (“the object is moving”), and the empty
prompt (“”). The results are shown in Fig. 10 and in the
“Text Prompt Effect” section of the website. Using the
generic prompt leads to irrelevant animations in which both

Input Baseline Generic Empty Prepend Append

Figure 10. Text prompt effect. We investigate the effects of using a
generic prompt (“The object is moving”) for all sketches, the effect
of using an empty prompt, or prepending and appending strings
that compel the diffusion model go generate sketches. Additional
video results are shown in the website.

the motion and the sketch appearance exhibit significant ar-
tifacts. Using an empty prompt leads to results with no vis-
ible motion, and large shape deviations. We can thus con-
clude that using prompts tailored for the input sketch is cru-
cial, both to preserve its characteristics and for the ability to
generate meaningful motion.

We further examine the impact of modifying the prompt
in a way that would motivate the text-to-video to create a
sketch. Specifically, we either prepend the string “A sketch
of” or append the string “Abstract sketch. Line drawing” to
the prompts.

In general, explicitly prompting for a sketch works com-
parably well to the original prompts. In some cases we ob-
serve slight differences in the extent of the motion or in the
adherence to slight details in the input sketch (e.g. the pen-
guin’s left fin is filled out when using the sketch prompts).
However, these can likely be accounted for with learning
rate tuning. We thus conclude that the model can reason-
ably infer the semantics of the object even when the prompt
does not directly convey its sketch-based nature.

Finally, we show additional results for applying different
prompts to the same input sketch (see “Varying the Prompt”
in the provided website). For example, observe how the
boxer changes his motion in accordance with the texts pro-
vided, demonstrating the actions of jumping, running, and
punching. Similarly, a cat can be made to change its pose,
or walk towards the camera. However, in some cases the
method is not sensitive enough to the changes in the pro-
vided text prompt. This is particularly apparent when the
prompt requests large changes in the shape of the subject,
or when the diffusion model struggles to generate the de-
scribed motion even in it’s basic text-to-video setup. In the
video website, we demonstrate this on the ballerina sketch,
where the specifics of the prompts are largely ignored, lead-
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Figure 11. Different levels of abstraction. We show four selected
frames for each level of abstraction. The model can successfully
synthesize movement even for very abstract representations.

ing to similar dancing motions. However, notice that sup-
plying the base diffusion model with those same prompts,
also creates videos with dancing that is unrelated to the mo-
tion described in the prompt. We hope that this limitation
could be overcome as better, more expressive text-to-video
models become available.

B.2. Different levels of abstraction

We also demonstrate the effect of altering the abstraction
level of the input sketches. We show results for three objects
with three levels of abstraction. The sketches were gener-
ated using 16, 8, and 4 strokes. An example is provided in
Fig. 11, and more examples and the full videos are provided
in the supplementary website’s “Abstraction Level” section.
As can be seen, even for the extreme case of very abstract
sketches with only four strokes, our method still manages
to produce animations that fit the given prompt. Yet, the ab-
stract animations may appear less smooth, leaving room for
future work to tackle such challenging cases.

B.3. Sketch representation

As described in the main paper, we represent a sketch as
a set of black cubic Bezier curves, and use CLIPasso [81]
to automatically generate the sketches shown in the paper.
However, our approach can be applied to alternative sketch
representations. As highlighted in the limitations section of
the main paper, employing different sketch representations
may require additional hyperparameter tuning. To illustrate
the impact of changing the sketch representation, we ap-
plied our method to sketches from the TU-Berlin sketch
dataset [18], a human-drawn class-based sketch dataset. We
showcase the results of four representative sketches. Our

Input Output frames

Figure 12. Human-drawn sketches. We applied our method to
sketches from the TU-Berlin dataset. With our default parameters,
these create reasonable motion but fail to preserve the exact sketch
appearance. By tuning the parameters for this input style, shape
preservation can be improved. See the website for examples.

method was directly applied to the provided SVG files.
Fig. 12 shows a few representative frames from the videos
produced for two sketches. More results are shown in the
supplementary website. As can be seen, our method suc-
cessfully animated the sketches, however their appearance
is not fully preserved when using the default hyperparame-
ters. This can be improved by using lower learning rates for
the local path.

B.4. Learning rate scaling and tradeoffs

As discussed in the main paper, there exists a trade-off be-
tween the quality of generated motion and the capacity to
retain the appearance of the initial sketch. To illustrate
this trade-off, we conducted an experiment wherein we ran-
domly selected three sketches from each class in our eval-
uation set (9 sketches in total). We then tested the impact
of scaling the local learning rate within the range of 0.01
to 0.0001, keeping all parameters constant except for the
local learning rate. Qualitative results are shown in the
website, under the ”Trade-off” section. Observe that as we
move from the left (0.0001) to right (0.1), the motion in the
animations increases, better aligning with the text prompt.
However, this comes at the cost of preserving the original
sketch’s appearance. For example, observe how the fish and
the crab undergo complete transformations when using a
learning rate greater than 0.001. This trade-off introduces
additional control for the user, who may prioritize stronger
motion over sketch fidelity.

Furthermore, we assess the results using CLIP-based
metrics (Fig. 13). As can be observed, increasing the learn-
ing rate leads to a smooth tradeoff between motion qual-
ity and sketch preservation. Working with learning rates
∈ [0.001, 0.005] generally leads to a good compromise be-
tween the two aspects - though a user can choose a different
working point according to their preferences.
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Figure 13. Investigation of the tradeoff between motion quality
and sketch preservation. Increasing the local learning rates trades
one aspect for another.

Input Baseline +lr local +translation +scale

Figure 14. Hyperparameter effect. We show one representative
frame from each video (the full videos and additional examples
are provided in the website).

B.5. Hyperparameter effects

We demonstrate how changing different hyperparameters
in our method can provide the user with additional control
(see “Hyperparameter Effects” in the website). We observe
different effects across various sketches, which may be at-
tributed to the video model’s prior or the initial sketch qual-
ity. Specifically, in the third column (”+lr local”), we show-
case the impact of increasing the learning rate of the local
path. As evident, in some cases (biking and butterfly), this
improved the generated motion without significantly harm-
ing the sketch’s appearance. However, in other cases (cobra
and boat), increasing the local path’s learning rate leads to a
complete alteration of the original sketch. In the fourth and
fifth columns we show the effect of increasing the transla-
tion and scale prediction weights. As observed, this indeed
causes the objects to move more across the frame or change
their scale.

B.6. Other text-to-video backbones

We investigate the performance of the model when we swap
one text-to-video prior for another. In the main paper, we
use ModelScope [83] as our text-to-video diffusion back-
bone. Here, we qualitatively evaluate the effect of replacing

it with other text-to-video models. In particular, we look at
a set of ZeroScope models, tuned across a range of resolu-
tions and framerates. The results are shown in the supple-
mentary videos (website section “Comparing Video Mod-
els”). Two representative examples are provided in Fig. 15.
Our method generalizes to these models with no additional
changes. However, note that different models do lead to dif-
ferent motion patterns, and some of them may result in dif-
ferent tradeoffs between the level of motion and the ability
to preserve the sketch. For example, observe the cat (sec-
ond row) which either wags their tail, raises its front legs, or
does both, depending on the model. For some models (e.g.
zeroscope v1-1 320s) the cat appears more deformed, and
a user may prefer to use another working point on the local
learning-rate axis in order to restore the shape.

C. Implementation and technical details
Here we outline additional details required to reproduce our
work and experiments. We will release all code and image
sets used for evaluations to facilitate further research and
comparisons.

C.1. Sketch generation

Unless otherwise noted, all sketches presented in the main
paper and the supplementary material were generated us-
ing CLIPasso [81]. CLIPasso is a method for automatically
generating object sketches represented with cubic Bezier
curves. In the majority of examples, we applied CLIPasso
with the default settings, using 16 strokes. The sketch’s can-
vas size is 256× 256, and the strokes width is 1.5. It is im-
portant to note that our method can be employed with vec-
tor sketches created through alternative approaches, such as
[22, 28, 39, 80], or even sketched by hand. For optimal
performances, we recommend to represent the input sketch
with cubic Bezier curves.

C.2. Additional training details

To improve stability in early training steps, we initialize M
so that the predicted local displacements are small and the
global transformations T j are close to the identity matrix.

When sampling timesteps for the SDS loss, we follow
DreamFusion [67] and avoid sampling very early or very
late steps. In practice we sample the steps uniformly in the
range [50, 950].

When rendering the video frames for training we use a
canvas size of 256 × 256, even when using text-to-video
models trained with different aspect ratios. This limitation
is primarily due to memory constraints. Lifting this restric-
tion may aid in improving visual fidelity at the cost of higher
VRAM requirements. We similarly restrict ourselves to 24
frames. Increasing this value can improve smoothness at the
cost of additional memory. Our baseline method requires
roughly 23GB of VRAM.
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Figure 15. Other text-to-video backbones. We show the first frame from the results of five alternative text-to-video models. The full videos
and additional examples are provided in the website. Observe that the choice of backbone model affects the output video in terms of both
the sketch’s appearance and the type of generated motion.

C.3. Evaluation details

C.3.1 Baseline implementations

When comparing to alternative methods, we used the fol-
lowing implementations:
• ModelScope: https : / / huggingface . co /
spaces / damo - vilab / MS - Image2Video -
demo/tree/main

• ZeroScope: https : / / huggingface . co /
spaces / fffiloni / zeroscope - img - to -
video/tree/main

• VideoCrafter: https : / / huggingface . co /
spaces/VideoCrafter/VideoCrafter/tree/
main

• Animated Drawings: https : / / sketch .
metademolab.com/canvas

• Gen-2: https://research.runwayml.com/
gen2

Note that Gen-2 is actively updated. We obtained our
results on October 19th, 2023.

C.3.2 Evaluation metrics

For our sketch-to-video consistency metric we use Ope-
nAI’s CLIP ViT-B/32. For the text-to-video alignment met-
ric we use Microsoft’s xclip-large-patch14. This X-CLIP
model expects 8 input frames, which are sampled uniformly
from the generated video.

C.3.3 Evaluation data

In Tabs. 2 to 4 we provide the list of sketches used for our
quantitative evaluations, along with their associated prompt.

Figure 16. User study example question.

C.3.4 User Study

As discussed in section 5.2 of the main paper, we conduct a
user study to validate our suggested components. The user
study examines the sketch-to-video consistency and text-to-
video alignment of the animations produced when disabling
different components of our method. An example question
is shown in Fig. 16. These questions were repeated for all
the targets in the evaluation set, each time comparing our
full method to a random choice of the ablation scenarios.
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Table 2. Sketches, and prompts used for our quantitative evaluations for the ”animal” class.

The penguin is shuffling along the ice terrain, taking deliberate and cautious step with its flippers
outstretched to maintain balance.

The goldenfish is gracefully moving through the water, its fins and tail fin gently propelling it
forward with effortless agility.

The crab scuttled sideways along the sandy beach, its pincers raised in a defensive stance.

A galloping horse.

The eagle soars majestically, with powerful wing beats and effortless glides.

A hummingbird hovers in mid-air and sucks nectar from a flower.

A dolphin swimming and leaping out of the water.

A butterfly fluttering its wings and flying gracefully.

A gazelle galloping and jumping to escape predators.

The squirrel uses its dexterous front paws to hold and manipulate nuts, displaying meticulous and
deliberate motions while eating.
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Table 3. Sketches, and prompts used for our quantitative evaluations for the ”human” class.

The two dancers are passionately dancing the Cha-Cha, their bodies moving in sync with the infectious
Latin rhythm.

The boxer ducking and weaving to avoid his opponent’s punches, and to punch him back.

The runner runs with rhythmic leg strides and synchronized arm swing propelling them forward while
maintaining balance.

The jazz saxophonist performs on stage, his upper body sways subtly to the rhythm of the music.

The ballerina is dancing.

The biker is pedaling, each leg pumping up and down.

A martial artist executing precise and controlled movements in different forms of martial arts.

A surfer riding and maneuvering on waves on a surfboard.

A figure skater gliding, spinning, and performing jumps on ice skates.

A basketball player dribbling and passing while playing basketball.
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Table 4. Sketches, and prompts used for our quantitative evaluations for the ”object” class.

A waving flag fluttering and rippling in the wind.

A parachute descending slowly and gracefully after being deployed.

A wind-up toy car, moving forward or backward when wound up and released.

A windmill spinning its blades in the wind to generate energy.

A ceiling fan rotating blades to circulate air in a room.

A clock hands ticking and rotating to indicate time on a clock face.

The wine in the wine glass sways from side to side.

The airplane moves swiftly and steadily through the air.

The spaceship accelerates rapidly during takeoff, utilizing powerful rocket engines.

The flower is moving and growing, swaying gently from side to side.
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